
REAL TIME IMAGE PROCESSING WITH
RECONFIGURABLE HARDWARE

Miguel A. Vega-Rodriguez, Juan M. Sanchez-Pkrez, Juan A. Gbmez-Pulido

Univ. de Extremadura. Dept. de Informdtica
Escuela Politkcnica. Campus Universitario, s/n. 10071 Cdceres. Spain

E-mail: mavega @ unex.es Fax: +34-927-257202

ABSTRACT: Digital image processing is a very
important field within machine vision. Because of it is
hard to implement real time image processing
operations through software techniques, image
processing field is one of the most active areas for
reconfigurable computing. This paper introduces a new
PCI-based system for real time image processing with
reconfigurable hardware. The system uses the HOT2-
XL PCI board, and we have implemented a Visual C++
application in order to validate our hardware designs.
This environment is based on a library of hardware
modules implementing some of the most common
operations in image processing. The practical results
show that our hardware modules get real time
processing, a minimum resource use and a high
operation frequency.

1. INTRODUCTION
Machine vision can substitute human vision for target
tracking [1], robot guidance [2], and inspection tasks
[3]. Usually, such systems extract information from an
image following the steps: Image acquisition, image
processing, feature extraction, decision making. The
main challenge is that machine vision systems are
normally used in real time applications. The use of a
general-purpose processor does not usually allow real
time processing. So, traditionally, high speed ASICs [4]
have been required. However, it would have a limited
functionality due to the predefined ASIC architecture.
Reconfigurable (or custom) computing systems [5]
deliver the benefits of hardware speed and software
flexibility, because they can modify their architecture
by the software to suit the application at hand. FPGA
[6] has emerged as the natural platform for custom
computing machines due to its reprogrammability.
Furthermore, FPGAs provide significant
price/performance benefits compared to ASICs.

From among the four steps already mentioned, we have
focused on the image, processing. Any situation
requiring the enhancement, restoration, analysis, or
creation of a digital image is a candidate for these
techniques [7].

In this paper we present an integrated hardware and
software environment dedicated to processing images in
real time. The system has software processes to be
executed by the CPU and hardware processes to be
implemented into a FPGA, so it is based on the
emerging field of hardware-software codesign [8]. We

0-7803-7057-0/01/$10.00 02001 IEEE. 213

try to make a machine vision system, suitable for both
scientific purposes and commercial applications. To do
that, the goal we try to keep in mind is to maximize
both flexibility and efficiency (high throughput) with a
reduced cost.

The rest of the paper is organized as follows. Section 2
gives a brief overview of the HOT2-XL board that is
used as coprocessor for image processing. The
following section presents our hardware module library.
Section 4 describes the front-end application we have
designed. Then, in section 5, we show and analyze
detailedly the obtained results, indicating the
advantages of the hardwarelsoftware co-design. Finally,
in section 6, the conclusions and future work are
indicated.

2. THE HOT2-XL BOARD
HOT2-XL board is one of PCI-interfaced, FPGA-based
custom-computing boards offered by Virtual
Computing Corporation. We have chosen a PCI board
because of the properties of the PCI bus [9] and its
growing popularity for image processing applications.
We use the HOT2-XL board as a reconfigurable
coprocessor aimed to image processing. The board has
a XC4062XLA-09HQ240C FPGA, two fully
independent 32-bit banks of RAM for a total of 4 MB,
and a Configuration Cache Manager [lo].

3. LIBRARY OF HARDWARE
MODULES

The purpose of our research is the development of new
architectures for image processing algorithms in real
time using FPGAs. So, we are developing a library
formed by hardware modules of very diverse types:
point, histogram, convolution, mathematical
morphology, ... operations. Indeed, at the moment we
have finished the following 16 modules: complement
image (CI), binary contrast enhancement or
thresholding (BCE), histogram (H), brightness slicing
(BS), vertical gradient filter (VGF), horizontal gradient
filter (HGF), diagonal gradient filter (DGF), low-pass
filter (LPF), high-pass filter (HPF), laplacian filter
(LF), histogram sliding and stretching or
brightnesskontrast adjustment (HSS), binary erosion
(BE), binary dilation (BD), gray-scale erosion (GSE),
gray-scale dilation (GSD) and median filter (MF). [7]
gives more details about these operations.

The final purpose is to combine all these modules with modules. PIHR operates on PC systems with Windows,
software processes into a hardwarekoftware co-design and it has been written in Visual C++. The application
environment aimed to machine vision applications. The offers a Windows typical graphic interface (see figure
hardware modules will be downloaded and HOT2-XL 2) and uses the HOT2-XL PCI board, our library of
board’s FPGA quickly reconfigured as required by the hardware modules and the HOT Run-Time
applications. Reconfiguration (RTR) method.

Hardware modules are “programmed” by creating
VHDL models and schematics which are designed,
simulated, refined, and synthesized using Xilinx tools
[ll]. Every module is implemented using in each case
the architecture that is best suited for real time
operation and for the FPGA device we use. We have
performed very diverse optimizations in each module:
use of techniques of parallelism like replication and
pipelining, optimization of the multipliers by means of
adder trees in the convolution modules, reduction of the
sorting and selection network in the median filter and
the gray-scale morphological operations, search for a
high regularity, reutilization of common resources, etc.

As example, figure 1 shows the implementation we
have followed for the median filter. Because of we have
32-bit words (so, four 8-bit pixels by word) we have
replicated the functional units, reusing common
resources, in order to apply the median filter
simultaneously on four pixel neighbourhoods and
accelerate the operation four times. The computation of
the four pixels (Pl, P2, P3 and P4) is performed in two
stages (pipelining). While stage 1 computes the pixels
P1, P2 and P3 according to the three words read in the
current clock cycle, stage 2 computes P4 and writes the
resulting word associated with the three words read in
the previous cycle.

Pixels or the Image I

.,
QM
W L
CZH
C l M
C2L
C l H
C l M

ClL

Figure 1. Implementation for the median filter.

4. THE PIHR APPLICATION
We have implemented the PIHR application (in Spanish
“Procesamiento de Imigenes mediante Hardware
Reconfigurable”, Image Processing by Reconfigurable
Hardware) in order to validate our library of hardware

Figure 2. Graphic interface of the PIHR application.

User can load, store, copy, paste and visualize any
bitmap (.bmp) image file. After selecting a window
with the source image, user can choose how the image
processing operation is done: using software (CPU) or
hardware (HOT2-XL). In any case, the title bar of the
resulting image window will include the number of
milliseconds taken to do the operation, and the text
“Sw” or “Hw”. In the hardware version title bar, the
clock frequency of the hardware module is also shown.
So, for a functional test of our hardware modules we
can execute the software version and then compare it
with the image obtained from the FPGA. Furthermore,
this allows us to compare the difference in performance
of both versions. To find more general measurements,
the application shows in the statusbar the dimensions of
the processed image, as well as its number of colors. In
this way, it is possible to obtain the number of pixels
per millisecond.

The clock frequency of the hardware version can be
changed (between 360 KHz and 100 MHz) via a dialog
window, and so, we can probe the computation speed-
up for hardware version with different frequencies; as
well as other effects because of the increase or decrease
of the clock frequency.

PIHR also allows the caching of hardware modules to
reduce the configuration overload of frequently used
modules. For that, it uses the on-board Configuration
Cache, managing a list of the hardware modules in
cache. When the Configuration Cache is full, the
application replaces the hardware modules using a LRU
(Least Recently Used) policy. In conclusion,
reconfiguration time of the system with a different

214

hardware module is reduced because it will probably be
in cache.

5. RESULTS
Table 1 shows the results obtained for the different
hardware modules. The operations are sorted out from
less to more execution time for the software version,
therefore, from less to more complexity.

Table 1. Experimental results for the different
operations.

Second column presents the maximum frequency
admitted by each of our hardware modules. The
quantities presented in this one and the fifth column
have been obtained from the reports generated by the
Xilinx Foundation Series tools [l l] after the synthesis
of each hardware module. Therefore, they are real
measurements on implementations already carried out,
and not estimations.

Observing the table we conclude that almost all the
hardware modules admit a maximum clock frequency
about 33 MHz, coinciding with the PCI bus
specifications for a 32 bid33 MHz system, and
therefore, an 132 Mbyteskec. bandwidth [9].

It is necessary to highlight the gray-scale erosion and
dilation operations, as well as the median filter. Their
maximum frequency decreases significantly regarding
the rest of modules. This fact is fundamentally due to
they include a pixel sorting and selection circuit. This
type of circuits has a great quantity of logical levels,
generating a great quantity of propagation delays (logic
and routing delays). These increase the minimum clock
period, and therefore, decrease the maximum
frequency.

Third and fourth columns show a comparison between
the hardware and software versions. In both columns,
the average execution time is indicated for each
operation on 30 images of 640x480~256. With a 16-
MHz clock, in the HOT2-XL board, the time to process
30 images oscillates between 574.766 and 1578.672

ms.The reconfiguration time of the board (440 ms) is
included in these times. Notice that if we use the same
operation repeatedly, the board would only be
configured the first time.

The same operations, written in Visual C++ and
compiled with the appropriate optimizations, require
between 150.391 and 84459.766 ms in a PC with a 350
MHz Pentium I1 processor and 64 Mb of RAM.
Therefore, the hardware implementation represents an
important improvement over the yield of the software
versions except for the complement image and the
histogram. The complement image is a very simple
operation, for what the hardware implementation is not
advantageous due to the reconfiguration time overload.
On the other hand, the histogram is the only operation
whose hardware version possesses clearly a low yield.
The reason is its implementation, which carries out a
total of 8 sequential readwrite operations for each word
(32 bits) of the input image. This implementation is
forced by the HOT2-XL architecture. Mainly for the
number of fully independent memory banks that the
board has, forcing to treat multiple memory operations
in a sequential way (one after another), not taking
advantage of the inherent parallelism.

It can also be observed that the improvement produced
with the hardware implementation increases as the
operation is more complex, obtaining a time up to 85
times smaller than the respective software version
(median filter). Note that the HOT2-XL is running at a
clock rate approximately 1/22 (16 MHz) that of the
microprocessor (350 MHz), and the clock of the
hardware versions could be changed to larger
frequencies, inside the limit indicated in second
column, if it is necessary to obtain a better
performance.

If we intend to process images in real time (30 images
per second), and we suppose that a processing
operation by image is only applied, we must admit a
maximum time of 1000 ms. Table 1 shows that more
than the half of the operations in software version can
not reach this speed. In fact, the software only gets real
time for the simplest operations. However, the real time
processing is possible using our hardware modules
except for the histogram operation, whose
implementation has been adversely affected by the
board architecture.

The overload due to the reconfiguration time has great
importance in the shown data. For this reason, we have
used the Configuration Cache included in the HOT2-
XL. If a hardware module was already loaded in the
Configuration Cache the average reconfiguration time
would decrease to 270 ms. Therefore, all the operations
would have in their hardware version a significantly
lower average execution time to the one shown in the
table.

In conclusion, the more operation complexity the more
hardware improvement. On the one hand, the

215

reconfiguration time influences less. On the other hand,
the performance gain produced by the exploitation of
the parallelism (replication and pipelining) in the
hardware versions becomes more notorious. Table 1
shows clearly the advantages of the hardwarelsoftware
co-design. The simplest operations (complement image)
would be implemented in software, while the most
complex ones would be performed in hardware
exploiting its higher yield.

In fifth column we show the use of resources of the
FPGA expressed by number of CLBs (Configurable
Logic Blocks), knowing that the XC4062XLA FPGA
has a total of 2304 CLBs. The percentage of CLBs used
of those 2304 is also indicated. It should be kept in
mind that each module (except the histogram) has its
functional units replicated four times to take advantage
of the HOT2-XL board architecture (in a 32-bit word
there are four 8-bit pixels). This fact multiplies the use
of resources by four. Moreover, each module also
includes the circuitry required to the internal
management of the on-board memory. In spite of
everything, the designed hardware modules present an
efficient use of the FPGA resources. This low use of
resources is useful for future lines of work, with the
intention of combining several hardware modules inside
the FPGA at the same time, avoiding intermediate
reconfiguration times. in this way, pipelines could be
designed where each stage is an image processing
operation.

The HSS module highlights because it uses a 61.63% of
the FPGA resources. The reason is that it includes an
integer pipelined multiplier and an integer pipelined
divider, and both circuits are enormously complex and
need a great quantity of resources. This fact shows the
high benefits of the implementation followed for the
necessary multipliers in the convolution operations (by
means of adder trees, shifts, etc.). Notice that
operations like the laplacian filter, the low-pass filter,
the high-pass filter, ... present a very lower use of
resources, although they also include multiplications (or
even divisions). Also, it is observed that the circuits
with similar functionality, and therefore complexity, use
the same number of resources (erosion and dilation).

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a PCI-based real time
image processing system. The system can be
reconfigured in run time to adapt it to the requiriments
of an application, carrying out several different
operations per execution. To do that, we used
reconfigurable hardware, and more concretely, the
HOT2-XL board. In order to configure the HOT2-XL a
library of hardware modules is being implemented.
When the library be completed, it could be reused by
other designers saving cost, design time, etc.

The PIHR application is being implemented as a mix of
software and hardware, so it is based on in the
emerging field of hardware/software co-design [8]. This

adds a great deal of flexibility to the development
process, being possible to explore the trade-offs
between hardware and software implementation of
application ideas.

The presented results illustrate the efficacy of FPGA-
based reconfigurable systems to image processing
applications, showing a great speedup over software
versions as the operations are more complex. Then, our
system will help us to relax the constraint on the
number of operations in a given real time application,
thus allowing the implementation of more complex
algorithms. The practical results also show the
effectiveness of the followed architectures and
optimizations: use of techniques of parallelism like
replication and pipelining, reutilization of common
resources, etc. Everything has allowed us to get real
time processing, a minimum use of resources and a high
operation frequency.

Now, we are investigating the use of this system as part
of an industrial inspection system, more concretely, for
the evaluation of the cork stopper quality applying
digital image processing techniques, with the benefits
of hardware speed, as well as flexibility and
price/performance ratio of FPGAs.

7. REFERENCES
D. Geman and B. Jedynak. “An Active Testing

Model for Tracking Roads in Satellite images”.
IEEE Trans. on Pattern Analysis and Machine
Intelligence, 18(1), January 1996, pp. 1-14.

M. Bertozzi and A. Broggi. “Vision-Based
Vehicle Guidance”. IEEE Computer, July 1997,

A.D.H. Thomas, M.G. Rodd, J.D. Holt and C.J.
Neill. “Real-Time industrial Visual inspection: A
Review”. Real-Time Imaging, vol. 1, 1995, pp.
139-158.

M.J.S. Smith. “Application-Specific Integrated
Circuits”. Addison-Wesley, 1997.

J. Villasenor and W.H. Mangione-Smith.
“Configurable Computing”. Scientific American,
276(6), June 1997, pp. 54-59.

S. Brown and J. Rose. “FPGA and CLPD
Architectures: A Tutorial”. Proc. IEEE Design &
Test of Computers, 13(2), Summer 1996, pp. 42-
57.

G.A. Baxes. “Digital image Processing.
Principles and Applications”. John Wiley & Sons,
1994.

G. de Micheli and R.K. Gupta.
“Hardware/Software co-design”. Proc. IEEE,
85(3), March 1997, pp. 349-365.

PCI Special Interest Group. “PCi Local Bus

pp. 49-55.

Specification Revision 2.1”.
http://www.pcisig.com, June 1995.

[101 Virtual Computer Corporation. “H.O.T. I1

[111
Hardware Guide. Version 2.0”. 1999.

Xilinx Inc. http://www.xilinx.com. 2001.

21 6

http://www.pcisig.com
http://www.xilinx.com

